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Abstract.  A methodology is proposed that integrates historical production data into large reservoir models by the local updating of the permeability field.  The focus is on conditioning a proposed initial model to injection/production rate and pressure history in an iterative fashion.  Integrating flow simulation and kriging algorithms within an optimization process based on linearized formulas of reservoir behaviour with property and numerically calculated sensitivity coefficients constitutes the proposed methodology. This method makes it possible to condition the permeability distributions to injection/production rate and pressure history from large reservoirs with complex heterogeneities and changes of well system at the same time. Discussions show that sensitivity coefficients change with time/iterations and that using the linearized formula to get the optimal property changes at all master point locations is a valid strategy.
1 Introduction
There is a challenge to condition reservoir property models to production data for large scale fields with a long production/injection history accounting for realistic field conditions. Direct calculation schemes are avoided considering that they are often limited to 2-D single-phase flow. Stochastic approaches such as simulated annealing or genetic algorithms (Deutsch, 2002; Cunha, et. al., 1996) require a lot of simulation runs, making them practically unfeasible for large scale applications. Algorithms and software for production data integration based on hydrogeological developments such as sequential self-calibration (Wen, et. al., 1998; Wen, et. al., 2002) have not been proven applicable in complex reservoir settings with multiphase flow, 3-D structure and changing well conditions. Streamline-based methods have been used in large reservoirs to condition the property models to observed production rates or water cut at wells (Qassab, et. al., 2003; Agarwal and Martin, 2003; Tarun and Srinivasan, 2003), but in general, they need a finite deference method to create pressure fields so that it is difficult for these methods to condition the property models to observed well bottom-hole pressure for real large reservoirs with multiphase flow, 3-D structure and changing well conditions. The convergence of results for gradual deformation methods is slow so that lots of iterations are needed for large 3-D models (Hu, 2002; Feraille, et. al., 2003). Regularization methods like Bayesian based techniques need reliable prior information that is difficult to guarantee in many cases (Shah, et. al., 1978).

There is a need for a novel computational efficient production data integration method that: (1) integrates well bottom pressure and production rate simultaneously by limited flow simulation runs, and (2) keeps a high accuracy as much as possible in large complex 3-D reservoir models with high heterogeneous property models, multiple phases, complex well system change and long history of production and injection. 
2 Basic idea and general procedure of the proposed methodology
Our basic idea consists on the numerical calculation of the sensitivity coefficients on the basis of two flow simulations – an initial base case and a single sensitivity case. With this, we substitute the difficult analytical calculation of the sensitivity coefficients by a simple algorithm. The approximate sensitivity coefficients, which are used to locally update the property models, are then used to obtain optimal changes at master point locations by optimization with the linearized formulas of reservoir response changes(p-p0, q-q0) and reservoir property change(∆k), p-p0≈(∂p/∂k)∆k and q-q0≈(∂q/∂k)∆k. Subscript “0” denotes the foundational model. The procedure is iterated until the results are satisfied or can not be improved much. The overall procedure of the proposed methodology can be summarized as follows:
At first, select an initial conditional geostatistical realization as the base model that reproduces all of the static data possible, run a flow simulation with the base model and calculate the mismatch in pressure and fractional flow rates between simulation results and historical data.

Then consider the following outer optimization loop:

· Choose one location or multiple locations to perturb based on the local mismatch at well locations – areas with greater mismatch are given a greater probability of being chosen for perturbation;

· Perturb the permeability – either by 0.5 or 1.5 perturbation factor since there is no use in making too small of a change;

· Propagate the change to all locations in the grid system, which really means the locations within the range of correlation of the changed value. The perturbation location and range may change with iteration;

· Create the perturbed model;

· Run a second flow simulation with the perturbed model and calculate the numerical sensitivity coefficients; 
· Calculate optimal changes to reservoir properties at master point locations and propagate to the entire grid system;

· Run another flow simulation to establish the updated model, which may be the new base model for next iteration.
· Calculate the mismatch. 
Repeat the optimization loop until the results are satisfied or can not be improved
The simulation runs involved in the methodology of production data integration proposed in this work are to be performed using the ECLIPSE flow simulator. This allows the consideration of complex geometry and heterogeneity of reservoir models as well as realistic well scheduling. However, if the finite flow simulation runs turn to be excessively costly, it is always possible to use a streamline flow simulator instead. 

The formula to calculate the sensitivity coefficients of reservoir responses with respect to the permeability change are as follows:
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 are the sensitivity coefficients of pressure and rate at the well with index w and time t for iteration i with respect to horizontal permeability change 
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 are the flow simulation results of pressure and rate at the well with index w and time t with the perturbed model by perturbing permeability only at the location 
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  are the simulation results of pressure and rate at the well with index w and time t with the foundation model at iteration i, respectively; 
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 refer to the changes of pressure and fractional flow rate introduced by the perturbation at the location 
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 without considering the other perturbations.

For one perturbation location at each iteration, the differences of well bottom hole pressure and fractional rate between the foundation model and the perturbed model at one iteration can be used to calculate the sensitivity coefficients directly. However, for multiple perturbation locations at each iteration, the changes of pressure and production rate at wells are the total effect caused by the joint permeability changes propagated from the multiple perturbation locations. There is a need to calculate the approximate changes of pressure and production rates caused by the permeability change propagated from one perturbation location based on the permeability values at perturbation locations and the distances between the objective well and perturbation locations.
The expectation is that after 5-20 iterations by using the proposed methodology, the number of wells with high mismatch and the highest mismatch level at wells would be reduced. 

Two main features of the methodology distinguish this method from others: 1. numerically calculated sensitivity coefficients of pressure and flow rate subject to changes in porosity and permeability are used in the optimization to get the optimal property changes; 2. integrates pressure data and oil rate data to reservoir models at same time for large reservoirs with multiple phase, 3-D structure and changing well conditions by limited simulation runs. 

3 Behaviour of  Sensitivity Coefficients 
Sensitivity coefficients of well bottom pressure and production rate subject to the property change are very important parameters in the methodology. Here the behavior of the sensitivity coefficients was studied by comparing the calculated sensitivity coefficients at Well 1 between the first two iterations in an application. Well 1 was a producer at the beginning and was converted into injector later around time of 6100. The perturbation locations, perturbation ranges and perturbation factors are the same for the two iterations. The results are shown in Figure 1.  From Figure 1, we can see that the sensitivity coefficients at the well in the production period change with time and decline with iteration. For the injection period, the change of the sensitivity coefficients of well bottom pressure is more complicated. This means that we can not use one set of sensitivity coefficients for all time and all iterations.
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Figure 1. The behaviour of sensitivity coefficients of well bottom hole pressure and oil production rate subject to the permeability change at the grid block with Well 1 for the two iterations.
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Figure 2.  The behaviour of sensitivity coefficients of well bottom hole pressure and oil production rate subject to permeability change at the grid block with Well 1 for the different perturbation variogram types. 
From Figure 2, we can see that the perturbation variogram has a larger effect on the sensitivity coefficients of oil production rate but little effect on the sensitivity coefficients of the well bottom hole pressure.  The perturbation with a variogram of Gaussian type gets larger absolute values of sensitivity coefficients of oil production rate than that with a variogram of spherical type. Considering that there is no large difference between the sensitivity coefficients of well bottom hole pressure, the perturbation with a variogram of Gaussian type may provide better results.
4. An Application of the Proposed Methodology
The proposed methodology was applied to a synthetic reservoir with 9 wells and production/injection history of 6025 days. “True” permeability and porosity models were the post-processed realizations generated from sequential Gaussian simulation/co-simulation by setting permeability and porosity as zero at the grid blocks with  permeability values lower than 100md. The results from flow simulation with “true” permeability and porosity models were used as production historical data. Well liquid production rate and water injection rate were set as input parameters in flow simulation. The initial model of permeability for the methodology was generated by sequential Gaussian simulation with different random seeds from “true” models based on the well data. One perturbation location was selected at each iteration in the application. The porosity models used in flow simulation were generated by co-simulation with the correlation coefficient of 0.7 to permeability models. The results of mismatch change with iterations in the application of the methodology are shown in Figure 3(a). It can be seen that after 20 iterations, the mismatch in well bottom pressure of the updated model decreased by 69.31% from the initial model, the mismatch in oil production rate of decreased by 84.62%, the global mismatch decreased by 76.96%. Figure 3(b) shows that the updated model gets a better history match for field oil production rate. Therefore, the methodology can decrease the mismatch in well bottom hole pressure and oil production rate at the same time with a limited number of flow simulation runs. 
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                   (a) Mismatch change                                 (b) Field oil production rate 
Figure 3. Mismatch evolution with iteration number and comparative field oil production rate for a synthetic case example.
4  Conclusions
The proposed method combines flow simulation and kriging algorithms together with an optimal technology in order to use less number of flow simulations for conditioning a proposed initial property model to fractional flow rate and pressure history at same time by an iterative scheme with numerically calculated sensitivity coefficients. The perturbation locations are selected based on the local mismatch at each well and some master point locations are used as reference positions to calculate the pressure and fractional flow rate sensitivity coefficients subject to changes in porosity and permeability. The optimal changes of porosity and permeability at the master point locations are obtained by minimizing the global mismatch related to reservoir responses of pressure and fractional flow rates calculated by linearized formulas on property change, and then are propagated to the whole grid system by kriging. 

The discussion shows that we can not use one set of sensitivity coefficients of well bottom hole pressure and oil production rate subject to property change for all iterations. The application demonstrates that the methodology can reduce pressure mismatch and rate mismatch with a limited number of flow simulation runs. Additional investigation is needed in order to increase the methodology efficiency.
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